Modeling water diffusion anisotropy within fixed newborn primate brain using Bayesian probability theory.
نویسندگان
چکیده
An active area of research involves optimally modeling brain diffusion MRI data for various applications. In this study Bayesian analysis procedures were used to evaluate three models applied to phase-sensitive diffusion MRI data obtained from formalin-fixed perinatal primate brain tissue: conventional diffusion tensor imaging (DTI), a cumulant expansion, and a family of modified DTI expressions. In the latter two cases the optimum expression was selected from the model family for each voxel in the image. The ability of each model to represent the data was evaluated by comparing the magnitude of the residuals to the thermal noise. Consistent with previous findings from other laboratories, the DTI model poorly represented the experimental data. In contrast, the cumulant expansion and modified DTI expressions were both capable of modeling the data to within the noise using six to eight adjustable parameters per voxel. In these cases the model selection results provided a valuable form of image contrast. The successful modeling procedures differ from the conventional DTI model in that they allow the MRI signal to decay to a positive offset. Intuitively, the positive offset can be thought of as spins that are sufficiently restricted to appear immobile over the sampled range of b-values.
منابع مشابه
Diffusion MR imaging characteristics of the developing primate brain.
Diffusion-based magnetic resonance imaging holds the potential to non-invasively demonstrate cellular-scale structural properties of brain. This method was applied to fixed baboon brains ranging from 90 to 185 days gestational age to characterize the changes in diffusion properties associated with brain development. Within each image voxel, a probability-theory-based approach was employed to ch...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملUncertainty in White Matter Fiber Tractography
In this work we address the uncertainty associated with fiber paths obtained in white matter fiber tractography. This uncertainty, which arises for example from noise and partial volume effects, is quantified using a Bayesian modeling framework. The theory for estimating the probability of a connection between two areas in the brain is presented, and a new model of the local water diffusion pro...
متن کاملپهنهبندی خطر زمینلغزش با استفاده از تئوری بیزین
The aim of present research is landslide hazard zoning using Bayesian theory in a part of Golestan province. For this purpose, landslides inventory map was created by landslide locations of landslide database (392 landslide locations). Then, the maps of effective parameters in landslide such as slope degree, aspect, altitude, slope curvature, geology, land use, distance of drainage, distance of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2006